In Memoriam: William A. Armstrong

This was sent to me today by Charles Armstrong’s daughter. He passed away in 2020 at the age of 91 ~ Julianne

Charles A. Armstron

Korean War Period: 1951-1955

After graduating Boston College, I was accepted into the OCS program in Newport, Rhode Island.

I was  selected to be a member of the second class. Upon successful completion of a very intense 90-day program I was assigned to the USS Los Angeles. With my background and studies in science and physics I was assigned to the gunnery department and focused on fire control electronics and optical systems. Upon arriving in Korea, I was designated the Main Battery (8”/55 guns) Fire Control Director Officer. I remained in this position for the full tour of combat duty in Korea, approximately 2 ½ years. 

Upon returning to Long Beach, California, I received orders to leave the USS Los Angeles and report to instructors’ school at Norfolk, Virginia and then to Fleet Air Defense (and Guided Missile), Center at Dam Neck, Virginia Beach, Virginia.

 The final two years of my service was spent as the Range Officer and Fire Control Director. There were additional duties as the Ammunition Officer, legal support, to enlisted personnel, and providing support to the future assigned members of SEAL Team Six.

 I completed a full and exciting term of service for the Navy in February 1955.

Hughes Aircraft 1962- 1987

I started with Hughes Aircraft in their Naval Programs (DPRD). I participated in several Anti-Submarine Warfare (ASW) projects. I quickly advanced to become Project Manager in the Systems Division (SD) for new programs on command control, communications (C3), and intelligence studies. A focus in this division were the operational requirement, and design guidelines for the U.S. Navy Advances surface Missile Systems (ASMS) and the Army Surface Missile Defense (SAM-D). These programs produced the Navy’s Aegis missile weapon system and the Army’s Patriot Weapon System for Army units in the field. The next endeavor was the DX Program which evolved into the Spruance Class guided missile destroyer which are currently operating in the Atlantic and Pacific Fleets.  I spent the next 17 years in the Strategic Missile Division. My work in the Navy’s Special Project included the electronic and guidance systems for the Fleet Ballistic program (Polaris, Poseidon, and Trident submarines). Other projects included Air Force navigation systems, and portable calibration equipment for on -site destroyer electrical equipment. The following projects involved the development of the Star Tracker, and to study the signal processing technology that could be implemented in future guidance and control systems. I retired after 25 years of service at Hughes Aircraft and went on to another 24 years in Aerospace. I took with me a lifetime of friendships and memories.

Community Request: Information Regarding Surveyor

Sharing an email request for information. See below.

From: Danny Ravelo raveloda [at] gmail.com
Subject: Surveyor Orbiter records,

First, thank you for maintaining this site and records of the work and lives of previous employees at Hughes Aircraft. 

I am in the search of any data, records or diagrams of the Hughes Aircraft proposal for a lunar orbiter using the modified Surveyor frame that the late Mr Fisher worked on. The ultimate goal is to try and build a computer model of it. References and data on it are very scarce but would you be able to point me in the right direction?

Any tips or help is very appreciated. Direct emails to raveloda [at] gmail.com

TACSAT, Jolly Giant Built by HAC, in Orbit and Operating Well—Hughes News February 14, 1969

The world’s largest and most powerful communications satellite, built by HAC for the Department of Defense and launched Sunday from Cape Kennedy by the Air Force aboard a Titan-3C booster, now is in synchronous orbit over the Pacific.

         HAC Program Manager Tom Mattis and other Hughesites who witnessed the launch described it as “beautiful, beautiful, adding “it was a glorious day for it.”

         All the tests scheduled to be completed by Wednesday had been accomplished and all systems were operating well.

         The 1600-pound experimental tactical communications satellite (TACSAT), two stories high and more than 8 feet in diameter, carries a cluster of antenna systems capable of radiating signals that can be received by all types of ground terminals including those with antennas as small as 1-foot in diameter.

         Construction of the spin-stabilized spacecraft, built under a USAF contract totaling $30 million, was directed by the Air Force Space and Missile Systems Organization (SAMSO).

         The giant satellite will be used by the Army, Navy and Air Force to test the feasibility of suing synchronous satellites for tactical communications with small mobile ground stations, aircraft, and ships at sea.

         Mr. Mattis said the tests will determine whether hundreds of small mobile terminals with varying power levels can be used effectively with a single satellite.  Another objective of the mission will be to determine the best frequency bands to be used for tactical service.  The tests will be in the ultra high frequency (UHF) and the super high frequency (SHF) ranges.

         The satellite’s communication antennas are mechanically “despun” to keep them pointed toward earth.

         “The new satellite,” Mr. Mattis said, “will test for the first time in space a new Hughes concept of stabilization called “Gyrostat” which defies the theory that all spin-stabilized satellites must be “short and squat” and look like over-sized hat boxes.”

         Heretofore, satellites have been designed for the inertia characteristics of a disc rather than a rod.  The Gyrostat principle, however, is designed to permit stabilization of long slender bodies.

         Some Parts Spin

         The new principle holds that satellites can spin around their minor axes and permit some parts to spin while other parts remain stationary, with never a wobble in the spacecraft, he explained.

         The concept not only permits variations in the length configuration of communications satellites, thus allowing full utilization of the booster shroud, but it also enable important payloads, such as antennas or telescopes to remain stationary so that they may be precisely pointed in any direction.

The Tortuous History of the Williams Patent–Jack Fisher

Don Williams was thought of by many people at Hughes Aircraft as an engineering genius.  He was revered for his role in the design of SYNCOM and his patent that enabled attitude and orbital position control of a spin stabilized satellite.  The patent that Don Williams obtained, assigned to Hughes Aircraft, was the keystone for the development of spin stabilized communications satellites built by Hughes over the 30 years following the patent application on August 21, 1964.  Williams stunned his friends and colleagues at Hughes by taking his own life on February 21, 1966.

Williams was involved with the geostationary satellite design effort from the very beginning in early 1959.  He was very concerned that Hughes Aircraft would retain any patent rights evolving from this design effort.  In November 1959 he traveled to NASA Headquarters in Washington DC to brief NASA executives on the Hughes design activities.  He began his briefing by stating that Hughes wished to retain all patent rights with his discussion of the Hughes design.  NASA personnel agreed to this premise.

By early 1960 Hughes had a satellite design in place that was clearly prototypical for the yet-to-come SYNCOM.  The mission plan utilized the four-stage NASA-developed SCOUT launch vehicle with an Altair solid motor as the spin stabilized unguided fourth stage.  A fifth stage solid rocket added to SCOUT would boost the satellite into a geosynchronous transfer orbit.  The satellite included a solid rocket motor to attain the final geostationary orbit.  The mission plan included launch from the near-equatorial Jarvis Island about 1600 miles south of Hawaii.  

In Reference 1, published in early 1960, Williams describes the mission plan and his control system.  The system consists of a sun sensor with two slits at a 350 angle, used to determine satellite attitude relative to the sun and spin rate, and two jets, one parallel to and one normal to the satellite spin axis, used to precess the spin axis and control orbital velocity.  These features are described a patent application dated April 18, 1960.  Williams determined that jet performance for the selected valves was a thrust of 1.3 pounds and a specific impulse (ISP) of about 60 seconds for a system pressurized with 3000 dry nitrogen.   At this time Williams had tested a lab model that would allow a claim for reduction to practice for his control system.  

With the NASA contract received by Hughes in August 1961 the mission ground rules were modified to utilize a launch from Florida with the Delta launch vehicle.  NASA adopted the name SYNCOM for this mission.  A successful geostationary orbit was achieved with the launch of SYNCOM III on July 26, 1964.

On August 21, 1964 Williams reapplied for a patent on his control system. He states in this application, “This is a continuation in part of my prior co-pending application Ser. No. 22,733, filed Apr. 18, 1960 now abandoned.  In order to disallow any NASA claims of rights to the patent the application describes in detail the satellite and mission as of the 1960 design prior to the NASA contract of August 1961. The application includes the sun sensor and jets of the control system as well as a nutation damper.

In 1966 the U. S. Patent Office allowed Hughes patent claim.  However, NASA requested that the patent be issued to NASA as it was first used on NASA satellite.  The Court of Customs and Appeals ruled Hughes owned the patent and the U. S. Patent 3758051 Velocity Control and Orientation of a Spin Stabilized Body, was granted on September 11, 1973.  The first page of the patent is shown below.

In November 1973 Hughes filed suit in U. S. Court of Claims charging that the government had used the patent without authority and sought compensation.  The first trial in 1976-77 ended when the judge was disqualified.  The next trial in 1979 ruled for NASA. This was appealed and the appeals court ruled that the judge had erred and returned the case to the lower court.  In 1982 the court ruled in Hughes favor but limited royalties only to those satellites that were under control from the ground.  This was appealed by Hughes and in 1983 the Appeals Court ruled that the patent also applied to satellites that controlled by onboard computers.  This expanded the royalties claim to military as well as NASA satellites. 

In February 1988 a trial in the U. S. Court of Claims, under Judge James Turner began to determine royalty payments to Hughes.  To be determined:  what satellites infringed the patent, what are reasonable royalties, and what is the interest on the unpaid royalties going back as far as 1963.  Hughes asks for royalties of 15% for a total of $1.2 billion on 100 satellites.  Early in the trial Judge Turner, court clerks, attorneys, and reporters made a visit to the Hughes high bay in El Segundo.  After donning the obligatory smocks they heard Dr, Albert Wheelon, Hughes CEO, describe in detail the satellite assembly process and the operations required to maintain a satellite in orbit.

During the trial it was revealed that in 1974 Hughes offered licenses for the use of the Williams patent to Philco-Ford, TRW and Messerschmitt-Bolkow-Blohn for 2 to 5% of the satellite cost.  Hughes at the time had filed suit against Philco-Ford for patent infringement. This suit was settled out-of-court with a payment rumored to be $75 million.  This seriously undermined Hughes claim for a 15% royalty.

Patent rights expire in 17 years or September 1990 for the Williams patent.  It was rumored that some government satellite programs might be delayed past this date to avoid any patent royalty liability.  

Judge Turner finally ruled that 81 satellites violated the patent and had a value of $3.6 billion with a royalty rate of 1% or $36 million. Added to this is $118 million for delay compensation for loss of unpaid royalties for a total of $154 million.  The 81 satellites were all government and about 75% were military.

 Hughes appealed the judgment of the United States Court of Federal Claims awarding Hughes compensation based on a 1% royalty rate.  On June 19, 1996 the U. S. Court of Appeals affirmed that a 1% royalty was the court determined that a royalty rate of 1% would be reasonable.

On March 1, 1999 the U. S. Supreme Court denied a government petition to review Judge Turner’s decision for Hughes.  Federal Claims Court entered judgment for Hughes on March 12,1999.  Payment of $154 million was made to Hughes on March 30, 1999.  

Final note: patent royalties are taxable as ordinary income less, of course, litigation expenses.

Note:  I cannot attribute the facts in this paper to any particular source.  All of the references listed below were necessary to establish my understanding of this history.  The only exception is Reference 1 that provides Don Williams description of his system as patented.

References

  1. Dynamic Analysis and Design of the Synchronous Communication Satellite, D. D. Williams. Engineering Division Hughes Aircraft Company TM-649 May 1960.
  2. U S Patent 3758051 Velocity Control and Orientation of a Spin-Stabilized Body Donald D Williams
  3. The Origins of Satellite Communications 1945-1965.  David J. Whalen.  Smithsonian Institution Press, 2002.
  4. NASA Announces Project SYNCOM NASA Press Release No. 61-178 August 11, 1961
  5. SYNCOM Design and Operation NASA Press Release No. 61-223.
  6. The Syncom III Launch NASA TN D-3377 Forest H. Wainscott,  April 1966
  7. Hughes Case Could Send Patent Claims Into Orbit, Evelyn Richards.  The Washington Post August 13, 1989.
  8. Hughes Awarded Judgment in Long Running Case Defense-Aerospace.com source Hughes Electronics March 1999
  9. Patent Case May Cost U. S. Billions Edmund L. Andrews New York Times April 22, 1989.
  10. 10.HAC Receives Basic Patent On Spin-Stabilized Satellites—Hughes News September 14, 1973.
  11. Hughes Aircraft Asks 1$ Billion From U.S. Over Satellite Patent Ralph Vartabedian Los Angeles Times February 3. 1988
  12. Judge in $1.2 Billion Case Sees How Satellite Are Built—Hughes Aircraft Patent Suit Shifts to Plant.  Ralph Vartabedian, Los Angeles Time February 6, 1988.
  13. Legal Blunder May Be Costly to Hughes Aircraft Could Lose $270 Million Claim; Judge In Patent Case Cite Error By Lawyers. Ralph Vartabedian Los Angeles Times February 6, 1988.
  14. U. S, in Last-Ditch Effort to Thwart Suit by Hughes Aerospace:  The Pentagon Allegedly Stole Satellite Technology.  A Judgement of up to $1.2 Billion is Expected in 23-Year Case.  Ralph Vartabedian Los Angeles Times May 23, 1994.
  15. Hughes Wins $114 Million In Patent Case Technology:  It Is the Largest Such Award Ever Against U. S. Government, But It Falls Far Short of the Company’s Expectations.  Ralph Vartabedian, Los Angeles Times June 18, 1994.
  16. Death Ends Work of Satellite Star Donald Williams. Hughes News February 25,1966.
  17. United States Court of Appeals for the Federal Circuit.  Hughes Aircraft Company, Plaintiff-Appellant, v. The United States, Defendant/Cross Appellant June 19, 1996.

HSGEM – The Hughes GeoMobile Satellite System Story—Andy Ott

In the early 1990’s, Hughes Space and Communications Group (HSCG) teamed with Hughes Network Systems (HNS) to develop a satellite based cellular communications system.  This was to be a total end-to-end system. HSCG was responsible for the Space Segment (spacecraft, spacecraft on-orbit as well as launch operations, including the facilities, software for both spacecraft bus and payload, and launch vehicle procurement). HNS was responsible for the user and ground segments (ground hardware infrastructure, network management, gateway stations, as well as cell phones and the billing system). Project management, including overall “Big-S” Systems Engineering, was the responsibility of HSCG as the prime, requiring formation of a GeoMobile Business Unit within HSCG.

The spacecraft did not fit into either the existing HS601 product line nor the under development at the time HS701 product line, necessitating a unique spacecraft, labeled HSGEM. There were many new, unique requirements for HSGEM space segment, the following is a list of a few of the major challenges:

  1. 13 KW Spacecraft Bus with dry weight 5,500 – 7,000 lbs. A modular Xenon Ion Propulsion System (XIPS) addition, if required due to launch vehicle selection. Payload weight 3500 – 4000 lbs.
  2. A single L-Band 12.25-meter aperture antenna to provide both transmit and receive communications. The Astromesh reflector is 18 ft in length by 44 inches in diameter stowed for launch and when fully deployed is a 52.5 ft by 40 ft ellipse with a 12 ft depth. A 128-element feed array provides in excess of 200 individually controllable spot beams.
  3. Elimination of potential Passive Intermodulation Products (PIM) sources for the spacecraft bus and payload. The diplexer was a special challenge due to the single antenna and the significant difference between receive and transmit power at L-band.
  4. Digital Signal Processor (DSP) to provide channelization, routing and beamforming; all functions previously performed by analog and passive hardware. The DSP included a mobile-to-mobile switch to allow for direct routing of mobile terminal to mobile terminal calls, thereby reducing round trip delay to a single hop. The DSP utilized state of the art at the time ASICs jointly designed and qualified by Hughes and IBM and manufactured by IBM. Flexible digital beamforming was a special challenge.
  5. Common software for payload, spacecraft system test and launch plus on-orbit operations integrated from Commercial, off the shelf (COTS) products and HSCG developed DSP command and control.
  6. Unique approach to North-South station keeping using the power of the payload to perform electronic beam steering vs chemical station keeping while operating in inclined orbit.

A development vehicle and the first two spacecraft were manufactured by HSCG, the Satellite Control Center by Raytheon and the Network Control Center and ground infrastructure by HNS.  The first launch of a HSGEM spacecraft, however, occurred in the year 2000 after HSCG was bought by Boeing. Although Boeing activities are not discussed on this website, it is public information that the first HSGEM was successfully launched by Sea Launch and met or exceeded all requirements (space and ground), resulting in a very successful and happy customer. The satellite and ground systems are still operational today (2018) and revenue creating, exceeding the 12-year life requirement of the contract.

Fig I: HSGEM spacecraft in launch configuration at HSCG High BayFig 2: HSGEM On-orbit

Key to the commercial success of this project was its efficient use of very valuable and much in-demand L-Band frequency spectrum. Ability to control more than 200 individual spot beams allowed for reuse of the same frequency spectrum more than 40 times and tailoring the coverage area to meet needs of specific customers. A comprehensive article, “The Hughes Geo-Mobile Satellite System”, was co-authored by HSCG (John Alexovich and Larry Watson) and HNS (Anthony Noerpel and Dave Roos) with major support from the rest of the “Big S” Systems Team and presented at the 1997 International Mobile Satellite Conference held in Pasadena California. The article is an excellent description of the end-to end system. Some of the key points are as follows (full article appears immediately following key points).:

  1. HSGEM is sized to provide 16,000 voice circuits for 2 million subscribers, including presence of up to 10 dB of shadowing.
  2. The maximum coverage area with over 200 beams, each approximately 0.7 degrees in diameter or 450 km across, is 12 degrees as viewed from geosynchronous altitude.
  3. Dual mode terminals provide the ability to communicate with either the HSGEM or with local terrestrial cellular systems (GSM) for voice, data, facsimile, and supplementary services.
  4. The HSGEM accommodates many features that support flexibility and reconfigurability as technology further advances, which has been demonstrated over 17 years (so far).

 

ATS Mobile Terminals—the Pope Paul VI’s Visit to Columbia, the 2500th Anniversary of the Persian Empire and President Nixon’s Visit to China—Roland Boucher

This Hughes mobile satellite ground station was designed and built in 30 days to transmit live color television coverage of Pope Paul VI’s visit to the Eucharistic Congress in Bogota, Columbia in 1968.

The Go-Ahead

In the spring of 1968 Hughes was asked if it were possible to broadcast, through a satellite, the upcoming visit of Pope Paul VI to Bogota, Columbia. The Early Bird satellites operated by Comsat were considered but they required an 85-foot ground antenna.  Time and cost precluded this approach.  We were about to say NO then I suggested to the group that ATS-3 with is high gain receiving antenna could be used allowing a much smaller 15-foot diameter antenna.  The Hughes Ground Systems Group had just completed a prototype 10,000-watt transmitter.  If it could be made available we had a chance.  I also suggested that the terminal contain a VHF communication set in case the telephone service from Bogota to Hughes California prove unsuitable.  NASA agreed to make ATS-3 available, and one month before the expected arrival of the Pope in Columbia we were given the go-ahead.

Time was short; I moved my office into Lou Greenbaum’s shop and began work.  We needed almost immediate shipment of all components needed to build the terminal.  Lou and I drove to Fullerton to inspect the transmitter; it was OK so I asked that it be shipped to Lou’s shop that week.  The first problem came up the next day when the Purchasing department announced that no military terminal structure was available in less than six weeks.  They said a garbage truck tilt up box could be made available in one week. I said buy it, and tell them to put the ribs on the inside, panel it with mahogany plywood, and provide a strong roof and a door on one end. Next, I was told that the only 15-foot antenna available for immediate delivery was from Gabriel’s Horns in New Hampshire. I remember saying, “BUY IT!  God must be on our side”.

Testing Everything

Tom Hudspeth loaned us a prototype ATS spacecraft up and down frequency converter and the FM video modulator used to transmit Spin Scan Camera video. I borrowed a Boonton signal generator from the equipment pool to provide the FM voice subcarrier.  We borrowed the prototype of the VHF terminal installed on the Coast Guard Ice Breaker Glacier and built a 3-element Yaggi antenna to talk to Hughes from Bogota in case the phone lines were not reliable.  When the Fullerton transmitter was installed it would trip off in seconds after turning on.  This went on for about a week then I asked the technician Fullerton sent to install the transmitter, “What did you do different — it was working in Fullerton”.  He told me that nothing was changed except the directional couplers use in Fullerton had been borrowed so he installed new ones. I asked if he was careful to get the directional arrows on the directional couplers pointing in the right direction and he replied “what arrows?”  In ten minutes the transmitter was working again.  We tested the station, tracking the satellite, which was not perfectly stationary.

At first glance, one might think that we were forced to transmit blind since we could not possibly receive video on a 15-foot antenna.  Fortunately, the video signal has a very large amount of energy in the blanking pulse and this is transmitted at the 30-hertz frame rate.  We tracked the ATS-3 using this narrow band signal and plotted optimum antenna pointing angles with two carpenters tape measures mounted to the antenna gimbals.  Later in Bogota we used the VHF link to talk directly with the NASA ground stations to verify signal saturation levels in the spacecraft.  The station was flown to Bogota in a USAF C-130 and set up in less than one week.  Figures 3 and 4 show the terminal in operation in Bogota, Columbia.

The 15-foot antenna was dropped and dented during assembly in Bogota. We found a great body man who “made it all smooth again”.  He was right and it worked.

Operations in Columbia

Comsat insisted that Hughes had no license to transmit television signals through a satellite and that we should lease the terminal to them for the Pope’s visit.  I had adjusted the Boonton signal generator to provide voice signal levels about 1/10 the normal Comsat levels.  Their man on site in Bogota complained, also he also could not understand how we could possibly know when we were pointing our antenna at the spacecraft.  I knew the Comsat voice levels were unnecessary for acceptable quality and refused saying I wanted to make sure we had excellent quality video of the Pope. As to the antenna pointing, we had tracked the spacecraft for weeks, if the carpenter tape measures read correctly we were pointing at the satellite.  I knew NASA tested the VHF link every day so I could pick up the mike on our VHF terminal and ask for the microwave signal saturation level.  For the next 20 years satellite television quality was compared to BEST or “Bogotá Quality”

The Italian cameramen who accompanied the Pope had set up their control trailer next to our terminal. Early test using their video signal showed a troublesome amount of 60-cycle hum.  When this was pointed out, the Italian technical guy suggested that we tie both trailer and terminal together and drive a stake in the ground between them establishing a common ground. He also suggested that we disconnect the ground at the local power distribution transformer establishing the stake between our stations as the only ground. It worked.

After the successful transmission of the visit of the Pope to Bogota the first mobile satellite transmitting station went to Persia to transmit the 2500th anniversary of the Persian Empire in October 1971 to the world, then on February 5, 1972, a C-130 flew it to China for the historic visit by President Nixon .

I would like to thank The Bogota team which included Al Koury, Jim Burns, Jack Clarkson and Bernie Burns as well as those nameless others in Lou Greenbaum’s Satellite Command and Control Department who were vital in completing the terminal in 30 days.

I would also like to thank Howard Ozaki who provided the tunnel diode low noise receiver amplifier, Clovis Bordeaux Hughes Fullerton who provided the 10-kilowatt Transmitter, and especially Tom Hudspeth for his many valuable suggestions and “Loans”.

 

 

 

 

APPLICATION TECHNOLOGY SATELLITE – VHF EXPERIMENT ONLY–Roland Boucher

BACKGROUND

In early 1963 as a young 31-year-old engineer I was assigned the task of developing a method for mobile users to communicate through a synchronous satellite.  A brief study of the problem indicated that for truly mobile communications the user should be able to use a simple dipole antenna. This led to a company funded effort to demonstrate the reception of the one-half watt Syncom 2 VHF telemetry signal on a simple dipole antenna. On 21 February, the one-half watt Syncom2 VHF telemetry signal was successfully received on a dipole antenna. Three months later, on 8 May 1964, a teletype message was repeated through Syncom 2 telemetry and command system to a ground transmitter with a power of 19 watts using 12 and 14 db. gain Yagi antennas.

When news of these tests reached Frank White of the Air Transport Association he set in motion a series of events that led NASA to fund the ATS VHF Experiment.  His plan was to demonstrate two-way communication between a Pan-Am jet leaving Hong Kong with the NASA ground station at Camp Roberts California via the Syncom telemetry and command system.  On Jan 27 1964, these tests were successful and within weeks NASA funded the ATS VHF experiment.

The ATS-1 is the first of a series of five spacecraft built for NASA Goddard Space Flight Center by the Hughes Aircraft Company. The objectives of the VHF repeater are as follows:

• Demonstrate feasibility of providing continuous voice communications link between a ground control station and aircraft anywhere within the area covered by the satellite

• Demonstrate feasibility of providing a network in which data from small- unmanned stations or buoys are collected via satellite and disseminated

• Evaluate feasibility of VHF navigational systems

• Evaluate airborne and ground stations required in the above ­ mentioned networks

A fifth objective area was later added to demonstrate two-way voice and teletype communications from ships at sea anywhere in the satellite coverage area.
VHF REPEATER GENERAL DESCRIPTION

The VHF communications experiment is a frequency ­translation limiting (Class C) repeater receiving at a frequency of 149 Mhz and transmitting at 135 Mhz. The repeater both receives and transmits through an eight-element, phased-array antenna; Table 1 presents the repeater characteristics.

Operation of the repeater is as follows: incoming-signals at 149 mHz arereceived on each dipole element, routed through diplexers, amplified by a low-noise receiver, and shifted in phase to compensate for the relative position of each dipole antenna. The electronically controlled phase shifter in the receiver unit, driven by the waveform generators, causes the output s of each receiver to be in phase only for those signals originating from the earth. Reference sinusoids used to drive the waveform generator s are obtained from the same phased-array control electronics used to position the microwave beam toward the earth. The eight receiver outputs are summed together, filtered, down­ converted to an intermediate frequency (IF) of 29 megacycles, amplified, and passed through a crystal filter to limit the receiver bandwidth.

The IF is then amplified, up converted to 135 mHz, further amplified, and divided into eight equal parts. Each of the eight signals is routed to a transmitter where it is amplified, phase-shifted, and further amplified to a power level of 5 watts. Each transmitter output is routed through its respective diplexer to one of the antenna elements.

The transmitter phase shift is controlled by the waveform generator, which causes the signals from each antenna to reinforce in the direction of the earth. Provision is made to operate only odd or even sets of four transmitters, if desired, to reduce the DC power required.

It is also possible to drive the waveform generator from either the redundant Phased Array Control Electronics or to shut down this unit entirely creating a pancake antenna pattern, approximately 60 x 360 degrees that will encompass the earth during most parts of the launch trajectory and at all times after satellite reorientation.

The ATS spacecraft power supply and thermal design allow for continuous operation of the VHF experiment except during periods of eclipse. The repeater elements are supplied with -24volt and 23.4-volt regulated power. Switches are provided that allow operation of the equipment according to commands from the ground stations. Telemetered outputs are also provided which can be transmitted to earth either by the VHF or microwave telemetry systems.

The repeater is made up of nine subassemblies: eight units containing one transmitter, receiver, and diplexer; and one unit containing an up converter, down converter, waveform generator, and two voltage regulators. These units are shown in Figures 3 and 4.

TECHNICAL ADVANCES MADE BY ATS-1

1) The first VHF phased array in orbit

2) The first phased array to operate on both transmit and receive frequencies

3) The first deployable antenna on a spinning spacecraft

4) The first spacecraft repeater to use separate receivers and transmitters for each antenna element

The VHF antenna consists of eight full-wave dipoles arranged in a circle of one wavelength diameter (86 inches). Volume limitations in the Atlas-Agene shroud dictated the use of a deployable antenna. The eight-dipole elements were mounted on a radial arm attached to the forward solar panel and pivoted to place the antennas in a three-foot circle directly over the apogee motor nozzle during launch.

At separation from the Agena, the spacecraft is spun up; centrifugal force causes the antennas to deploy to the 86-inch diameter at 50 rpm. Deployment takes place during the normal spin up of the spacecraft without the use of ground commands.  When the spacecraft apogee motor is fired, the antennas are subjected to high Mach numbers and high heat fluxes. The rocket motor in the center of the array contains 750 pounds of propellant and burns for 40 seconds increasing the spacecraft’s apogee velocity by 6000 fps.

To withstand the severe thermal environment, the antenna elements were constructed of beryllium, flame-sprayed with aluminum oxide, and further covered with a Teflon ablative material. The high heat capacity of the ablative material and of the beryllium itself maintains the antenna temperatures below the unprotected equilibrium temperature of 3000° F.

IN-ORBIT PERFORMANCE

The following report is taken from a presentation given in May 1967 at a meeting of the RTCM in Las Vegas Nevada by Roland Boucher.

ATS-1 was launched into orbit on 6 December 1966.  The VHF repeater was first operated 3 days later. Since then, it has been used to successfully communicate voice and data between NASA ground stations at Rosman, North Carolina; Mojave, California; and Kooby Creek Australia. It has sent weather facsimile pictures and has been used to determine propagation properties of the ionosphere.

Simplex air to ground communication tests have been conducted with aircraft operated by Pan American, Eastern, TWA, United, American, and Qantas airlines as well as those operated by the FAA and the U.S. Air Force. Both simplex and duplex communications were successful with a shipboard terminal   constructed by Hughes. This terminal was leased to the U. S. Coast Guard and has operated successfully on the Coast Guard Cutter, Klamath at Ocean Station November in the Pacific Ocean which was described by a member of the U.S. Coast Guard.  In May 1967, the VHF repeater experiment had operated successfully for over 5 months with no signs of degradation.

Prior to the launch of ATS-1, there was considerable skepticism as to the feasibility of VHF satellite communications in mobile service despite the fact that nearly every satellite to date had used the VHF band for its primary mode of telemetry and weather photo video transmission.

SCINTILLATION FADES

The uneven diffractive properties of a disturbed ionosphere can cause deep fades at VHF frequencies. These fades are normally of a very brief nature lasting typically from 8 to 30 seconds. Examination of this phenomenon by Hughes Aircraft Company under NASA contract NAS-510 174 indicated that fades of greater than 6 db. depth could be expected 0.002 percent of the time in the mid-Pacific area, Tests with ATS – 1 during the first 5 months in orbit have failed to yield any statistically significant data on scintillation fades. The rarity of their occurrence makes it almost impossible to detect them in a normal push-to-talk circuit. They do not present a serious problem to this type of communications.

MOBILE TERMINAL NOISE

Mobile terminal noise was also cited by some as a nearly insurmountable problem as late as a few months before the ATS-1 launch. Tests on aircraft and on the cutter Klamath have shown this problem can be cleared up by normal RFI practices.

SEA WATER MULTIPATH

Multi-path fades were held up as an obstacle to VHF mobile communications with fades up to 30 db predicted. Tests with the ATS-1 to date have shown multi-path propagation not to be a serious threat. In examining the records of many hours of shipboard and aircraft communication, no clear evidence of multi-path propagation fades could be found. This despite the fact that Hughes intended to use the evidence of such fades as a requirement for the development of a new type antenna for the NASA/Hughes ATS C. The fades were not found. The antenna was not funded.

EARTH-NOISE TEMPERATURE

Earth-noise temperature was cited as a possible deterrent to VHF satellite communications. The proponents of this concept reasoned that many spurious emissions from the large number of earth transmitters would form a noise blanket which would jam the satellites receivers.

Measurements taken in late 1966 by Boeing Aircraft to determine receiver noise temperatures in flight from a commercial aircraft indicated that cities could be found quite easily by the noise they created. This noise was seldom evident more than 10 or 20 miles from the city centers. Noise temperatures even at relatively low altitudes seldom were in excess of 20 db. with a 10-db-background level being more nearly an average figure.

A simple calculation involving the area of the world covered by cities indicated that this noise would not be a serious problem at synchronous altitude. Corroborating evidence was the fact that most satellite command systems operate in the VHF band. Any serious problems in the uplink would certainly have been discovered before 1966.

The launch of ATS-1 proved this point. Up-link receiver sensitivity of the ATS-1 spacecraft is essentially that measured in the laboratories.

UNANTICIPATED PROBLEMS

The ATS uplink is in the land mobile band. In the early phases of the in-orbit test program, strong signals were heard in the satellite s passband. Many of these were conversations in English from what appeared to be military personnel. The conversations contained description of maintenance operations on jet aircraft indicating that a ground terminal used to communicate with mobile airport vehicles was transmitting to the spacecraft. Other signals in the spacecraft ‘s pass band that have been annoying at times have contained considerable 60 cycle modulation, indicating they originate from an earth borne transmitter.

None of these emissions proved detrimental to the test program after December 12. On that day, the severity of the jamming indicated that up link ERPs in excess of 2 kilowatts were present

A number of interested parties, through the cooperation of NASA and Aeronautical Radio listened for a one-week period in an effort to determine the origin of these strong signals. They were not present during this one-week period and have not returned. In the first 5 months as equipment and operating procedures have improved both in the aircraft and shipborne tests, this problem, which seemed so serious on 12 December, has been nearly forgotten.  Today VHF communications via satellite have been shown to be feasible for aircraft and maritime mobile application.

THE ATS-3 VHF EXPERIMENT

Spacecraft operating at microwave frequencies operate their transmitters well below peak power (transmitter Back-Off).  The VHF Experiment on ATS-3 Replaced the Class C RF amplifiers used on ATS-1 with linear RF amplifiers. This was important because it greatly reduced the inter-modulation distortion inherent in multi-channel transmitters. These transmitters were solid state and used a class A/B final stage; The DC power required was reduced 1/2 db. for every 1 db. of back off. This was a very important discovery since power is a very expensive commodity on any Spacecraft.

At low elevation angles multipath can cause a significant loss in signal for short periods of time as the reflected signal alternately cancels and adds to the direct signal. Circular polarization can eliminate this problem when used by receiver and transmitter that was later verified in field tests with TACSAT in 1969.

Hughes designed and tested circular polarized replacements for the dipole antenna elements on ATS-3.  Unfortunately, NASA did not approve their use.  Meanwhile Boeing designed a circular polarized flush mounted VHF antenna for the 747 aircraft.  C.A. Petry at ARINC worked with the airlines and FAA to produce a spacecraft compatible aircraft radio set in ARINC Specification 546.

When the first Boeing 747 was delivered to Pan Am, it was equipped with and ARINC 546 communication transceiver and a circular polarized antenna. This aircraft was equipped for satellite to aircraft communications.

ATS-3 was launched successfully on November 5, 1967, and positioned over the Pacific Ocean. Together with ATS-1 nearly global communications were possible at VHF frequencies.

Hughes designed a small inexpensive VHF terminal for the US Coast Guard that was installed on the USS Glacier, the ship used to resupply the Antarctic Base.  Sun spot activity was heavy during the 1967-68 winter, and HF radio was unusable for long periods of time.  The $4000 Hughes satellite terminal got through every time.

In the fall of 1969 I was selected as a representative of the State Department to the CCIR Conference on satellite communications.  Captain Charles Dorian and I were able to persuade the Russian delegate to support the US position to authorize VHF aircraft communications by satellite.  France led the opposition. The Russians brought along the eastern bloc, even Havana supported us. The French opposition was defeated – WE WON

Unfortunately, France played politics better than we did. As I understand it, they got NASA to oppose Aerosat in exchange for France support of the Space Shuttle. In any case, I received a phone call in Geneva from Hughes saying NASA pulled the plug – ITS ALL OVER.  I had spent nearly almost 10 years in the pursuit of a VHF Aeronautical Satellite to no avail.

At least the military did not have to play these politics.  Both Russia and the US adopted VHF communications (TACSAT).  The Syncom and ATS experiments produced at least two winners.

Completely independent of my employment with Hughes, I had developed the concept of an electrical powered battlefield surveillance drone and a Solar Powered high altitude spy plane. Dr. Bob Roney told me Hughes was not interested.

I left Hughes Aircraft in January 1973 and successfully proposed both aircraft to DARPA. The prototype electric powered battlefield drone flew that year and was shown on Los Angeles television. The 32-foot span proof of concept model of the spy plane flew on solar power alone in 1974.  A patent for the electric powered aircraft was granted on May 18, 1976.

POSTSCRIPT

On September 29, 1995, Ben McLeod and Bob Bohanon (Both from Pan American) organized a 30th anniversary celebration in Washington DC. Personnel from ATA, ARINC, Bendix, Comsat, FAA, FCC, Hughes, NASA and or course Pan-AM were in attendance. We all were all thrilled that the aging Frank White was able to attend and were sad that other important contributors from Comsat, Collins Radio, and the US Coast Guard were unavailable or deceased.

VHF COMMUNICATIONS EXPERIMENTS WITH SYNCOM 1963-1965

As remembered by Roland Boucher November, 2017

My involvement began in late 1963 when I was assigned to a team at Hughes Aircraft, that had been given the task of developing satellite communications applications. Syncom 2 was in orbit and the age of satellite communication had begun. As the junior member of the team, I was assigned mobile applications. A brief study of the problem indicated that for truly mobile communications the user should be able to make use of a simple dipole antenna (or aircraft blade antenna) and that the optimum frequency would be in the 150 MHz to 450 MHz range. The telemetry and command system of Syncom 2 operated in the VHF band at 136 MHz and 148 MHz this led to the proposal to use this spacecraft to demonstrate satellite to aircraft communications.

This document describes the efforts by personnel at Hughes, NASA, Air Transport Association, Bendix, Pan Am as well as the FAA and the US Weather Bureau.  Significant early contributors were Frank White (ATA), William Pulford and Harry Betsill (Bendix), Meredith Eick, Lou Greenbaum and Roland Boucher (Hughes), Ben McLeod, Bob Bohanon and Waldo Lynch (Pan Am), Pat Corrigan and Bob Darcy (NASA Goddard) and members of the antenna department at Boeing.  Many other organizations were to become involved over the next nine years.

In early 1964, a simple test program was initiated to obtain first-hand information on the properties of VHF satellite communication. On 21 February, the one-half watt Syncom 2 VHF telemetry signal was successfully received on a dipole antenna, thus demonstrating the successful reception of very weak (-142 dbm) signals by a standard telemetry receiver.

On 8 May 1964, the first teletype message was repeated through Syncom 2 at VHF frequencies, the ground transmitter had a power of 19 watts and the receiver a noise figure of 3.5-db, transmitter and receiver antennas were 12 and 14-db Yagi’s.  During the interval between these tests, two Boeing engineers received Syncom 2 telemetry while gliding over Puget Sound in a light aircraft (Aeronca Champion).

News of these tests reached the airline community, Frank White of the Air Transport Association set in motion a series of events, which eventually led to the ATS-1 VHF experiment on 27 July 1964.

Mr. White called the kickoff meeting of what he called The Interim Communication Satellite Committee. representatives of the Air Transport Association, FCC, FAA, NASA, Pan American World Airways, Bendix Radio, Boeing Aircraft, Comsat, and Hughes participated.  Mr. White’s plan was simple — demonstrate two-way digital communications between a Pan American jet aircraft in commercial service over the Pacific Ocean and the NASA-Hughes ground terminal at Camp Roberts California via the Syncom 3 satellite. The program moved swiftly.

On 19 August, 3 weeks after the program began, a modified Bendix aircraft receiver picked up the Syncom 3 telemetry signal as the spacecraft rose from Cape Kennedy in the first successful launch of a geostationary satellite.

On 21 September, 5 weeks later, the Syncom 3 telemetry was received aboard a PAA Boeing 707 enroute from San Francisco to Honolulu. The first digital message transmitted from a synchronous satellite to a commercial aircraft was demonstrated on that day.

On 27 January, exactly 6 months from the beginning of this ambitious program, the first two-way digital communication link between a ground station and aircraft via a synchronous satellite was established.

The first flight test took place over the Pacific Ocean in a Pan AM 707 aircraft. Those on board were Waldo Lynch a vice president of Pan American Airways, engineers Harry Betsill and Bill Pulford of Bendix Radio, and Roland Boucher of Hughes.

Operational tests were conducted that day during a flight from San Francisco to Honolulu, Harry Betsill remained on board conducting 3 hours of two-way communications between the aircraft and the NASA ground station at Camp Roberts California. NASA at both its Australian and Alaskan tracking stations monitored these transmissions. The aircraft with Harry continued on to Hong Kong.  On the return flight, it transmitted nearly perfect teletype copy at 60 wpm to the Camp Roberts terminal.

The success of this test program and the potential it demonstrated for mobile satellite communications led to the decision by NASA to Fund the first VHF repeater experiment on the ATS satellite.

Within weeks of the test of January 27 NASA asked Hughes to develop a VHF repeater experiment for the NASA/Hughes Advanced Technology Satellite ATS-1.  This experiment was managed by at first Bill Penprase then by Roland Boucher at Hughes. Pat Corrigan at the Goddard Spaceflight center was NASA program manager.

I am sorry that I am quite fuzzy about events at this time.  When returning home from the flight tests on January 28, I was told that my father had contacted meningitis at his home in Connecticut.  He died after a brief illness. The next event, which I really remember, was the solution to an ATS antenna temperature problem.

 

Hughes Launch Log 1963-2000–Jack Fisher

This is  a compilation of all unclassified Hughes Aircraft launches from the first launch of Syncom in 1963 through the calendar year 2000 in chronological order.  It is a work in progress and I solicit inputs and corrections from all.  I believe that I have included every unclassified launch and only status data is needed.  I have added the three HS-376HP launches that were conducted by Boeing 2000-2003.  Please review this and help me add to our log.